385 research outputs found

    An Efficient Hidden Markov Model for Offline Handwritten Numeral Recognition

    Full text link
    Traditionally, the performance of ocr algorithms and systems is based on the recognition of isolated characters. When a system classifies an individual character, its output is typically a character label or a reject marker that corresponds to an unrecognized character. By comparing output labels with the correct labels, the number of correct recognition, substitution errors misrecognized characters, and rejects unrecognized characters are determined. Nowadays, although recognition of printed isolated characters is performed with high accuracy, recognition of handwritten characters still remains an open problem in the research arena. The ability to identify machine printed characters in an automated or a semi automated manner has obvious applications in numerous fields. Since creating an algorithm with a one hundred percent correct recognition rate is quite probably impossible in our world of noise and different font styles, it is important to design character recognition algorithms with these failures in mind so that when mistakes are inevitably made, they will at least be understandable and predictable to the person working with theComment: 6pages, 5 figure

    Repair, abort, ignore? Strategies for dealing with UV damage

    Get PDF
    DNA repair is a prominent member of the nuclear transactions triad (replication, transcription, and repair). Sophisticated mechanisms govern the cellular process of decision-making (to repair or not to repair, to proceed with cell cycle or not and, eventually, to let the cell survive or die) and the temporal and spatial distribution of the DNA repair activities. UV radiation is a very common and virtually unavoidable mutagen whose carcinogenic potential seems to accumulate over time. Various strategies have been developed to avoid or decrease UV damage to cellular DNA, based on prevention of exposure as well as on post-irradiation measures. It is, however, important to acknowledge that the individual capacity for DNA repair varies during the life of the individual and must, therefore, be assessed so as to determine whether the individual is coping with environmental UV damage. Assessment of individual repair capacity might greatly modify the existing therapeutic strategies for common cancers and ought to become a routine part of health prophylaxis

    ATM in focus:a damage sensor and cancer target

    Get PDF
    The ability of a cell to conserve and maintain its native DNA sequence is fundamental for the survival and normal functioning of the whole organism and protection from cancer development. Here we review recently obtained results and current topics concerning the role of the ataxia-telangiectasia mutated (ATM) protein kinase as a damage sensor and its potential as therapeutic target for treating cancer. This monograph discusses DNA repair mechanisms activated after DNA double-strand breaks (DSBs), i.e. non-homologous end joining, homologous recombination and single strand annealing and the role of ATM in the above types of repair. In addition to DNA repair, ATM participates in a diverse set of physiological processes involving metabolic regulation, oxidative stress, transcriptional modulation, protein degradation and cell proliferation. Full understanding of the complexity of ATM functions and the design of therapeutics that modulate its activity to combat diseases such as cancer necessitates parallel theoretical and experimental efforts. This could be best addressed by employing a systems biology approach, involving mathematical modelling of cell signalling pathways

    Targeting ATM pathway for therapeutic intervention in cancer

    Get PDF
    The Ataxia Telangiectasia Mutated gene encodes the ATM protein, a key element in the DNA damage response (DDR) signalling pathway responsible for maintaining genomic integrity within the cell. The ATM protein belongs to a family of large protein kinases containing the phosphatidylinositol-3 catalytic domain, including ATM, ATR and PI3K. ATM provides the crucial link between DNA damage, cell cycle progression and cell death by first sensing double stranded DNA breaks and subsequently phosphorylating and activating other downstream proteins functioning in DNA damage repair, cell cycle arrest and apoptotic pathways,. Mammalian cells are constantly challenged by genotoxic agents from a variety of sources and therefore require a robust sensing and repair mechanism to maintain DNA integrity or activate alternative cell fate pathways. This review covers the role of ATM in DDR signalling and describes the interaction of the ATM kinase with other proteins in order to fulfil its various functions. Special emphasis is given to how the growing knowledge of the DDR can help identify drug targets for cancer therapy, thus providing a rationale for exploiting the ATM pathway in anticancer drug development. Moreover, we discuss how a network modelling approach can be used to identify and characterise ATM inhibitors and predict their therapeutic potential

    A Hybrid Filter with Impulse Detection for Removal of Random Valued Impulse Noise from Colour Videos

    Get PDF
    This paper presents a three dimensional hybrid filter to remove random valued impulse noise from colour video sequences. The switching median technique is utilized to protect noise free isolated pixels from filtering so as to avoid blurring of frames. The restoration of noisy pixels is done by brightness information obtained from median filtering and chromaticity information is obtained from vector directional filtering. This hybrid filter is applied in three dimensional sliding window where spatial as well as temporal information about neighbourhood is available for restoration of frame under consideration. Only noise free pixels of three dimensional sliding window are used for restoration of frame under consideration. Simulation results show that the proposed three dimensional hybrid filter yields superior performance in comparison to other filtering method

    Genetic Variability in Gladiolus for Growth and Flowering Characters (Gladiolus hybridus Hort.)

    Get PDF
    Gladiolus Sylvia x Melody exhibited early corm-sprouting (6.82 days). The hybrid Melody x Summer Sunshine (84.63 cm), followed by American Beauty x Pricella (84.12 cm) were tall. Maximum stem girth was observed in American Beauty x Summer Sunshine (35.31 mm), followed by Vedanapoli x Magic (33.71mm) and American Beauty x Melody (33.47 mm). Number of leaves per plant was higher in Melody x Magic (9.62), followed by Salvia x Magic (9.49) and Melody x Vedanapoli (9.42). The length was maximum (67.32 cm) in Melody x Summer Sunshine followed by Summer Sunshine x Pricella (67.57 cm), American Beauty x Vedanapoli (67.00 cm) and Vedanapoli x Pricella (66.06 cm). The hybrid Salvia x Melody was earliest to initiate flower bud (60.58 days) and first floret opening (69.04 days). The total duration of flowering was maximum in Vedanapoli x Magic
    • …
    corecore